You can search our database using more advanced options!

Sign In |

New User? Sign Up

Page Options

font size

Inside Journal


Editorial board member


The archive of journal


Sign in and submit a manuscript


Frequently Asked Questions

Order Issue


Reference Code: 919-18

Volume 2, Issue 4, 17 Dec 2011

Paper Type: Original Research Paper




The method of entropy production minimization for finding energy efficient paths of operation of process equipment is first presented using an instructive example with optimal control theory. With refer-ence to the earlier investigations, the researchers present some design rules that relate to the designs’ en-tropy production. Minimum entropy production is not obtained in special cases, not generally, by equipar-tition of entropy production or of thermodynamic forces. the researchers show that two well established industrial technologies, namely the Haldor Topsøe steam reformer and the Linde technology for air sepa-ration understood in terms of the design rules. The entropy production minimization technique is thus able to predict well proven technology, technology that has developed over several decades. This gives an argument for early use of this technique in the designing phase of energy intensive processes.

Authors: Signe Kjelstrup , Eivind Johannessen , Audun Røsjorde

Keywords: Entropy production minimization, energy efficient design rules


[1] Bejan A. Entropy Generation Minimization. The Method of Thermodynamic Optimiza-tion of Finite-Size Systems and Finite-Time Processes. New York: CRC Press, 1996.
[2] Kjelstrup, S., Bedeaux, D., Johannessen, E., Gross, J. Non-equilibrium Thermodynamics for Engineers, World Scientific, Singapore,
[3] Johannessen E., Kjelstrup S. Minimum en-tropy production rate in plug flow reactors: An optimal control problem solved for SO2
[4] Johannessen E., Kjelstrup S. A highway in state space for reactors with minimum en-tropy production. Chem. Eng. Sci. 2005;60:3347-3361. oxidation. Energy 2004;29:2403-2423.
[5] Nummedal L., Røsjorde A., Johannessen E., Kjelstrup S. Second law optimization of a tubular steam reformer. Chem. Eng. Proc. 2005;44:429-440.
[6] Nummedal L., Costea M., Kjelstrup, S. Minimizing the entropy production rate of an exothermic reactor with constant heat transfer coefficient: The ammonia reaction. Ind. Eng. Chem. Res. 2003;42:1044-1056
[7] Røsjorde A., Johannessen E., Kjelstrup S. Minimizing the entropy production rate in two heat exchangers and a reactor. In Pro-ceedings of ECOS 2003, Copenhagen, Den-mark, June 30 - July 2, 2003, Vol. X, p. 1297-1304.
[8] Røsjorde A., Nakaiwa M., Huang K., Iwa-kabe K., Kjelstrup S. Second law analysis of an internal heat-integrated distillation col-umn. In Proceedings of ECOS 2004, Ed. Ri-vero R., Monroy L., Pulido R., Tsatsaronis G., Mexico, 2004, 107-115
[9] Bedeaux D., Standaert F., Hemmes K., Kjel-strup S. Optimization of Processes by Equi-partition. J. Non-Equilib. Thermodynamics 1999: 24:242-259.
[10] Diosi L., Kulacsy K., Lukacs B., Racz A. Thermodynamic length, speed, and optimum path to minimize entropy production. J. Chem. Phys. 1996;105:11220-11225.
[11] Johannessen E., Nummedal L., Kjelstrup S. Minimizing the entropy production in heat exchange. Int. J. Heat Mass Transfer 2002;45:2649-2654.
[12] Spirkl W., Ries H. Optimal finite-time en-doreversible processes. Phys. Ref. E 1995;52:3485-3489.
[13] Tondeur D., Kvaalen E. Equipartition of En
International Journal of Energy and Environmental Engineering, Vol.2, No.4, 2011, 45-55
tropy Production. An Optimality Criterion for Transfer and Separation Processes. Ind. Eng. Chem. Res. 1987;26:50-56
[14] Bryson A., Ho Y. Applied Optimal Control. Optimization, estimation and control. New York: Wiley, 1975.
[15] Sauar, E. , Kjelstrup, S. and Lien, K. Equi-partition of forces. A new principle for proc
[16] ess design and operation. Ind. Eng. Chem. Res. 1996, 35: 4147-4153
[17] Leites, I., Sama, D. and Lior, N., The theory and practice of energy saving in the chemi-cal industry: Some methods for reducing thermodynamic irreversibility in chemical technology processes, Energy, 2003, 28: 55-65
[18] Tsatsaronis, G. and Morosuk, T., Advanced exergetic analysis of a refrigeration system for liquefaction of natural gas Int. Journal of Energy and Environmental Engineering, 2010, 1: 856
[19] Wilhelmsen, Ø., Johannessen, E., Kjelstrup, S. Energy efficient design simplified by sec-ond law analysis, Int. J. Hydrogen Energy, 35 (2010) 13219-13231
[20] Bohnet M. (Ed). Ullmann’s Encyclopedia of industrial chemistry. Wiley, 2003.
[21] Rostrup-Nielsen J.R. Dybkjaer I., Christian-sen L. Steam reforming opportunities and limits of the technology. In. Chemical Reac-tor Technology for Environmentally Safe Reactors and Products: Kluwer Academic Publishers, 1993, p. 249-281.
[22] Rostrup-Nielsen T. Manufacture of hydro-gen. Catal. Today 2005;106:293-296.
[23] Nakaiwa M., Huang K., Ohmori T., Akiya T., Takamatsu T. Internally heat-integrated distillation columns: A review. Trans I Chem E, 2003.
[24] Nakaiwa M., Owa M., Akiya T., Kawasaki S., Lueprasitsakul V., Yajima K., Takamatsu T., Design procedure for a plate-to-plate heat- integrated distillation column. Kagaku Kogaku Ronbunshu 1986;12:535-541
[25] Matlab 2006. Documentation on constraine-dotimization:
[26] Rivero, R, Cachot, T, Ramadane, A., and Le Goff, P., Diabatic or quasi reversible distilla-tion, Int. Chem Eng. 1994, 34: 240-242
[27] de Koeijer, G, Røsjorde, A., and Kjelstrup,
[28] S. Distribution of heat exchangers in opti-mum diabatic distillation columns, Energy, 2004; 12: 2425-2440
[29] Røsjorde, A., Minimization of entropy pro-duction in separate and connected process units, Doctoral Theses at NTNU 2004:111, 2004
[30] van der Ham, L. Kjelstrup, S. Improving the Heat Integration of Distillation Columns
in a CryogenicAir Separation Unit, Ind. Eng. Chem. Res, 2011; in print

More about this Paper

Reviewed Before : Yes

Reviewed Magazines and Sites:

Related Papers

Privacy Policy|Terms and Conditions

Tuesday, February 20, 2018 5:30 AM

Total page views